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We study photonic band gap formation in two-dimensional high refractive index disordered ma-
terials where the dielectric structure is derived from packing disks in real and reciprocal space.
Numerical calculations of the photonic density of states demonstrate the presence of a band gap
for all polarizations in both cases. We find that the band gap width is controlled by the increase
in positional correlation inducing short-range order and hyperuniformity concurrently. Our findings
suggest that the optimization of short-range order, in particular the tailoring of Bragg scattering at
the isotropic Brillouin zone, are of key importance for designing disordered PBG materials.
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Photonic band gap (PBG) materials exhibit frequency
bands where the propagation of light is strictly prohib-
ited. Such materials are usually designed by arranging
high refractive index dielectric material on a crystal lat-
tice [1, 2]. The description of wave transport in a pe-
riodically repeating environment provides a clear physi-
cal mechanism for the emergence of PBGs, in analogy to
common electronic semiconductors. It is also known that
certain aperiodic dielectric structures, such as quasicrys-
tals [3–5], can display a full PBG. Over the last decade
disordered or amorphous photonic materials have gained
growing attention [6–18]. This trend is motivated by the
many disordered photonic materials found in nature that
reveal fascinating structural color effects in plants, in-
sects, and mammals [19]. At the same time, fabricating
perfect crystalline structures with photonic properties at
optical wavelengths has proven to be more difficult than
initially anticipated [20]. It has been argued that dis-
ordered PBG materials should be less sensitive to fab-
rication errors or defects and thus promise a more ro-
bust design platform [15]. Moreover PBGs in disordered
dielectrics are isotropic, which could make it easier to
achieve a full PBG while at the same time offering bet-
ter performance in wave guiding, design of non-iridescent
stable pigments, and display applications [21–24].

Yet, until recently, direct evidence for the existence
of full PBGs in disordered photonic materials had been
scarce and the fabrication principles and physical-optical
mechanism leading to PBG formation remained obscure.
Although the importance of appropriate short-range or-
der for the development of PBGs in disordered photonic
materials was discovered early on [6–9], a strategy to
maximize the PBG width was lacking.

In 2009 Florescu and coworkers [25] proposed a new ap-
proach for the design of disordered PBG materials that
has attracted widespread attention. They introduced
the concept of hyperuniformity for photonic structures,
which enforces a certain type of short-range order. In
particular, so-called stealthy hyperuniform (SHU) disor-
dered patterns were reported to be fully transparent to
incident long-wavelength radiation [26, 27] and lead to
strong isotropic PBGs at shorter wavelengths [25]. Other
types of correlated disorder, such as those generated by
the random-sequential absorption model, were claimed
to be inferior because they do not induce the forma-
tion of PBGs for both polarizations simultaneously [25].
To the contrary, independent numerical work showed
that the amorphous diamond structure [28] and three-
dimensional networks derived from systems of densely
packed spheres [29] exhibit a full PBG in the absence of
stealthiness.

Here we aim to disentangle the role of short-range
order and hyperuniformity in producing PBGs. To es-
tablish a comparison between different disordered sys-
tems, we compare, using otherwise identical design pro-
tocols matching those studied in Ref. [25], the photonic
properties of systems with varying degrees and types
of correlations: (i) collections of rods for transverse-
magnetic (TM) polarization, (ii) trivalent networks (con-
nected walls) for transverse-electric (TE) polarization,
and (iii) decorated trivalent networks for both polariza-
tions. Our results suggest that stealthy hyperuniformity
and disk packing are equivalent strategies for the design
of two-dimensional disordered photonic materials.
Pattern generation.—Hyperuniformity corresponds to

the suppression of long-range density fluctuations and
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can be expressed as a condition for the structure factor,
S(k → 0) = 0. Stealthiness is even more restrictive and
requires the structure factor to vanish over a finite range,
S(k) = 0 for k < K [26]. Importantly, two-dimensional
SHU patterns can be regarded as a reciprocal-space coun-
terpart of packing hard disks (HDs) [30] of radius R,
which fulfill the condition g(r < R) = 0 for the radial
distribution function. In both cases the excluded zone
is determined by a dimensionless parameter, the pack-
ing fraction φ in real space and stealthiness χ in recip-
rocal space [26]. We interpret these parameters as mea-
sures for the amount of correlation in the system restrict-
ing randomness. Increasing φ or χ leads to pronounced
peaks in g(r) and S(k), indicating the development of
short-range positional order. Upon further increase of
φ or χ, entropy-driven crystallization sets in eventually.
Moreover, hyperuniformity is recovered asymptotically,
S(k)→ 0 for k → 0, when disks are packed into a maxi-
mally jammed configuration via compression while avoid-
ing crystallization [31, 32].

We generate disordered point patterns with different
levels of positional correlation as measured by φ and χ
using computer simulation [33]. Disordered HD patterns
are equilibrated fluids. SHU patterns are obtained us-
ing a pair potential derived from the potential energy,
E =

∑
|k|≤K S(k), where the discreteness of the sum is

a consequence of the periodic simulation box used. We
employ a simulated annealing relaxation scheme to find
disordered SHU patterns with S(k) < 10−6 for k < K(χ).
Selecting an area A in real space for a given number of
points N sets the number density ρ = N/A and defines
a characteristic length scale a = ρ−1/2, comparable to a
typical distance between the points.

The patterns calculated with our algorithms quantita-
tively reproduce previously reported [30] statistics and
correlation functions. Patterns below the critical pa-
rameters φ, χ ≥ 0.70, in which quasi-long-range order
gradually appears [30, 34, 35], already have significant
short-range order. Fig. 1(a-f) shows representative HD
and SHU point patterns at φ = 0.60 and χ = 0.50, re-
spectively. These parameter values were chosen as high
as possible while retaining the amorphous structure and
matching the S(k) peaks as closely as possible. A close
similarity of the local short-range positional order in both
patterns is visually apparent. We now investigate the ef-
fect of this similarity on photonic properties.

Photonic density of states—We study numerically the
photonic properties of a dielectric system composed of
silicon (dielectric constant or permittivity ε = 11.6) rods
and walls derived from HD and SHU seed patterns. For
the first protocol we place cylindrical rods (in three di-
mensions, disks in the plane) at the points of the seed pat-
tern. We use a fixed rod radius r/a = 0.189, which leads
to an area filling fraction Nπr2/A = π(r/a)2 = 0.112 of
the two-dimensional plane with silicon, independent of
φ and χ provided no two rods overlap. The no-overlap
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FIG. 1. Structural order in (a,b,e,f) HD patterns at φ = 0.60
and (c-f) SHU patterns at χ = 0.50. We compare (a,c) typi-
cal point patterns in real space, (b,d) structure factors S(k),
(e) radial distribution functions g(r), and (f) angle-averaged
structure factors S(k). The two-dimensional plots in (b,d)
confirm that the distributions are isotropic. The inset in (e)
shows that a correlation gap is present in HD and SHU pack-
ings for r < a. The inset in (f) demonstrates that long-wave
length fluctuations 2π/k > 2π/K are strongly suppressed (up
to numerical noise) in the SHU pattern. All data is obtained
by taking an average over 1000 independent patterns with
N = 200 points each. Vertical lines indicate the position of
the band edges in reciprocal space for TM polarization. (g)
Photonic properties of a dielectric structure composed of a
network of silicon rods placed at the position of the points
as shown in (a,c). nDOS as a function of the normalized
frequency νa/c in TM polarization for the HD system at
φ = 0.60 and the SHU system at χ = 0.50. Here, c is the
speed of light in vacuum.

condition is almost exactly met in the relevant regime
φ, χ ≥ 0.2. We use the supercell method [1] implemented
in the open source code MIT Photonic Bands [36] to ob-
tain the normalized photonic density of states (nDOS).
A finite sample (the supercell) is repeated periodically
and the band structure calculated by following the path
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FIG. 2. Decorated network structure derived from (a) a
HD seed pattern with N = 200, φ = 0.60 and (c) a SHU
seed pattern with N = 200, χ = 0.50. (b) and (d) show the
average of the square amplitude of the corresponding Fourier
transforms taken over 1000 network realizations.

Γ→M → X → Γ in reciprocal space. We accumulate a
histogram of eigenfrequencies and compare it to the cor-
responding one for a homogeneous medium with a refrac-
tive index that best matches the first band (low energy)
of both the structured and the homogeneous medium. In
the next step, the effective refractive index of the struc-
ture and the width and position of the PBGs are obtained
by direct analysis of the band structure [37].

The nDOS for the HD system with φ = 0.60 and for the
SHU system with χ = 0.50 [Fig. 1(g)] are almost identi-
cal in TM polarization and resemble a typical nDOS of a
photonic crystal. Apparently the structural similarity of
the seed patterns translates into a corresponding similar-
ity of the photonic band structure. In fact, the position
and width of the PBG covers exactly the peak region of
S(k), Fig. 1(f), corresponding to Bragg scattering at the
isotropic Brillouin zone.

It is known [38] that the placement of rods is a good
ansatz to obtain a PBG in TM polarization but does not
lead to the opening of a PBG in TE polarization, even
for perfect crystals. Instead, in the second protocol, we
perform the Delaunay triangulation of the seed pattern
and connect the barycenters of neighboring triangles by
walls (in three dimensions, bonds in the plane) to form a
trivalent network [39]. This protocol enforces a uniform
structure with three bonds at each node, favouring the
opening of a gap due to the local topology [25, 40, 41].
We use a fixed wall thickness of w/a = 0.288. Finally, to
enforce PBGs in both polarizations simultaneously, we
combine the two protocols and form a decorated network
consisting of rods (radius r/a = 0.2275) and Delaunay
walls (thickness w/a = 0.0593) [Fig. 2]. All geometric pa-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
χ

0

0.1

0.2

0.3

0.4

0.5

Δν
/ν

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
φ

0

0.1

0.2

0.3

0.4

0.5

Δν
/ν

0

TM (rods)
TE (walls)
TM-TE (decorated)

a)

b)

χmax

φmax

FIG. 3. Formation of PBGs for TM modes, TE modes and
for both polarizations simultaneously. The normalized PBG
width is plotted as a function of the parameters χ and φ for
(a) SHU and (b) HD seed patterns up to a maximal value of
χmax = 0.79 and φmax = 0.91. The shaded area marks the
appearance of first signs of peaks in reciprocal space indicat-
ing the presence of quasi-long-range crystalline order. The
dashed lines indicate the normalized PBG widths for other-
wise identical structural designs when the points are arranged
according to a hexagonal lattice seed pattern.

rameters are optimized to yield a maximally wide PBG,
see also supplemental material [33]. The results for the
HD system and the SHU system in TM, TE polariza-
tion as well as in both polarizations simultaneously are
equally similar [33].

Next, we analyze the normalized PBG width for TM,
TE and both polarizations simultaneously as a function
of stealthiness χ and packing density φ. As shown in
Fig. 3, the PBG is initially narrow but widens with in-
creasing χ and φ. Interestingly, the central frequency
ν0 of the PBG is almost unchanged at ν0a/c ' 0.35.
ν0 also coincides with the PBG center of a hexagonal
lattice with identical scatterer geometry and area filling
fraction. For comparison we include in Fig. 3 results ob-
tained when the seed pattern is the hexagonal lattice. In
this case, the PBG is even wider, which suggests that
the amorphous patterns attempt to asymptotically reach
the crystal values but cannot exceed them – at least not
for the two-dimensional structures considered here. The
joint PBG for TM and TE polarization is generally nar-
rower than the PBG for TM or TE polarization alone and
typically reaches only a width of approximately 13% for
amorphous patterns and 19% for the hexagonal lattice.
Robustness of the photonic band gap—Finally, we ad-

dress briefly the influence of imperfections on the width
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FIG. 4. Robustness of the band gap for a HD structure
at φ = 0.6 (a) and a SHU structure at χ = 0.5 (b). The
plot shows the averaged normalized PBG width for networks
of dielectric walls where a percentage p of links is removed
randomly. The shaded area represent the smallest and largest
gap within the ensemble of ten configurations studied. The
calculation was performed in TE polarization.

of the PBG. Imperfections are unavoidable in the exper-
imental realization of photonic materials and the robust-
ness of the PBG is an important design parameter. For
simplicity we restrict our analysis to the case of random
link removal in the network of walls and for TE polar-
ization, following the procedure described in [42]. A
percentage p of links is removed randomly and for each
value of p we calculate the nDOS for ten different struc-
tures. As shown in Fig. 4, we find that the removal of
links gradually reduces the width of the gap. Our results
indicate that, within statistical error, the results are the
same for the SHU and the HD structure. Moreover, our
results are similar to those obtained for the corresponding
hexagonal lattices of dielectric walls [42], see also supple-
mental material [33].

Discussion and conclusion.—Our findings demonstrate
that disordered packings in real and reciprocal space are
equally suitable for generating isotropic PBG materials
in two dimensions. SHU patterns restrict the accessi-
ble phase space in a different way, but are not found to
be more efficient in opening wider PBGs than HD pat-
terns. The parameters φ and χ acquire their meaning
due to the presence of a maximum value, i.e. a value
where the accessible phase space volume is zero, the sys-
tem is fully constrained, and dynamics disappears. In
the case of HDs this value is the packing density of
the densest packing of disks in the hexagonal lattice,
φmax = π/

√
12 ' 0.91. For SHU patterns the maxi-

mum value is obtained once the excluded zone in recip-
rocal space touches the Bragg peaks. Interestingly, and
for reasons that are unclear, our results suggest that SHU
patterns converge towards the square lattice [33] after the
appearance of intermediate stacked-slider phases with lo-
cal hexagonal order [43], and thus χmax = π/4 ' 0.79.
Since the phase space restrictions that are imposed by χ

and φ are highly non-linear, no simple linear relationship
exists between them well below their maximum value.

The characteristic length scale for the development of
a PBG, the so-called Bragg length lB , is typically on
the order of the characteristic structural length scale a.
Suppression of scattering at wave numbers smaller than
2π/lB , as targeted by hyperuniformity, should therefore
play a marginal role in the formation of the PBG. Indeed,
we believe that the emergence of a PBG is a side-effect of
hyperuniformity. Increasing χ prevents scattering for k <
K and the intensity piles up, due to a sum rule, just above
K [44]. Suppression of scattering at small wave numbers
and hyperuniformity (strictly or in approximation) are
then natural consequences of the development of short-
range order and vice versa.

In all cases studied the maximum bandwidth ap-
proaches the crystal values only asymptotically. The in-
fluence of defects is local and it affects the band gap
most whenever such defects percolate as shown in [42].
Moreover in [45] it was found that the bandgap of poly-
crystalline photonic structures remains nearly unchanged
from that of the perfect crystalline structure as long as
the crystal domains are larger than a few times the Bragg
length lB . These observations, taken together, suggest
that the band gap formation is determined by local prop-
erties. Optimization of short-range order, in particular
the tailoring of Bragg scattering at the isotropic Bril-
louin zone, and the appropriate topology are expected to
be the key aspects for enforcing a photonic band gap in
dielectric materials.
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